Synchronous Maneuvering of Uninhabited Air Vehicles

Olivier Laplace
Princeton University
FAA/NASA Joint University Program
Quarterly Review - June, 2001

Outline

Introduction

Problem description

- Aerobatics program specification
- Formation flying
- Trajectory parametrization

Coordination methods used

- Maneuver assignment
- Regrouping on a circle
- Simulation results

Concluding remarks

Objective:

- Demonstrate coordination of a group of UAV,
- Through the execution of an aerobatics program.

Aspects of interest:

- Maneuver assignment:
 Maneuver distribution over aircraft is not specified.
- Maneuver synchronization:
 Maneuvers must be flown by waves.

Aerobatics program

- Organized as a layered oriented graph of maneuvers
- Easily specified through a file

Maneuver j

Characteristics
Number of slots
Next maneuvers
Incentive

Trajectory characteristics

Maneuvers are made of basic trajectories, whose equations are known to aircraft. They can be adapted as follows.

Trajectory types:

- Trajectory parameters:
 - SpeedRoll rate
 - RadiusDuration

Trajectory positioning and orientation:

Formation flying

Roles in the diamond

Offset trajectories:

- reference trajectory
- aircraft trajectory

Trajectory parameters (speed, radius, and roll rate) are also adjusted so that aircraft stay in formation, if they track their offset trajectories as computed.

Aircraft position on trajectory

A trajectory parametrization, the Equivalent Path Length (EPL):

- EPL → aircraft position map, invertible for simple trajectories.
- Aircraft speed specified through EPL derivative: $\dot{s}=1$ corresponds to trajectory normal speed.
- Aircraft with same EPL on their own offset trajectories are in formation.

In our case:

- Trajectory are parameterized by time.
- We take EPL = time on trajectory.

EPL use:

- Predict aircraft future position knowing the aircraft EPL and its derivative.
- Compute the time necessary for an aircraft to reach a particular position on its trajectory (e.g. the end).

Staying in formation

L C

- Leader sets the virtual leader EPL equal to its own.
- The FCS tracks the nearest point on the trajectory (aircraft behave as beads on a wire).
- The follower speed is adjusted to keep up with the leader as follows:

$$\dot{s}_F = \dot{s}_L + K(s_L - s_F)$$

Maneuver assignment

Trajectory assigned to maximize team reward for flying the program:

$$\sum_{\substack{\text{maneuvers} \\ \text{flown}}} \left\{ \text{(maneuver's incentive)} - \sum_{\substack{\text{aircraft} \\ \text{flying it}}} \text{(cost to fly the maneuver)} \right\}$$

- Centralized scheme used.
- Done before each wave of maneuvers.

Regrouping

Regrouping trajectory:

- Horizontal circle of default radius.
- Tangent to the maneuver at its beginning.
- Flown at default speed.

- Same for all aircraft.
- Origin of EPL on the circle at the maneuver starting point.
- EPL length of the circle = S.

Regrouping

All aircraft:

- Compute a converging trajectory that brings them tangentially on the circle.
- Compute their entry point on the circle.

Leader:

- Flies at normal speed.
- Periodically broadcast its circle equivalent EPL, s_{CE} , and speed, \dot{s} .

Regrouping

Follower:

Maneuver entry

eader

point and

direction

 Adjust its speed to meet the leader when entering the circle.

 $\overline{s} = 0$

circle

Use of offset trajectories for follower circle entry

Transition trajectory generation

Idea in 2 dimensions:

 Go to any point arriving with the desired orientation using two circles and a line.

Extension to 3 dimensions:

 Use the line to climb, and if needed add an helix.

 Alternative method: Motion planing for an hybrid automaton (E. Frazzoli and E. Feron).

Simulation results

3D trajectory:

Aircraft positions in the horizontal plane versus time:

Concluding Remarks

Aircraft synchronization:

- Regrouping of aircraft on a circle has been demonstrated.
- Aircraft exchange signals when they are ready to start the maneuver.
- Aircraft can be on different circles, thus one can synchronize the execution of several maneuvers.

Future work: Collision avoidance

- Necessary because of limited precision of the trajectory tracking control law.
- Can be performed using a 1/r repulsive potential since aircraft relative speeds are small once they are in formation.